Abstract

Parental care is critical for offspring survival in altricial species. Although parents are the most common caregivers, other individuals (e.g., older siblings) can also provide alloparental care. Some have argued that animals engage in alloparental behavior to practice providing care for their eventual offspring, whereas others have argued that alloparental behavior enhances indirect fitness. Proximate measures have the potential to test ultimate functions of behavior. A focus on neural expression of oxytocin and vasopressin (two neuropeptides modulating alloparental care) or neural activation following exposure to related and unrelated individuals could reveal whether practice or investment in indirect fitness explains alloparental behavior. This study examined alloparental behaviors and neural responses in prairie voles (Microtus ochrogaster), a species that engages in alloparental behavior. Subadult (independent, yet sexually immature) male prairie voles were exposed to one of four stimuli: same-age sibling, neonatal sibling, unrelated neonate, or inanimate neonate-sized object. We assessed alloparental behaviors and quantified cFos protein expression in oxytocin and vasopressin neuronal populations of the paraventricular nucleus of the hypothalamus and the supraoptic nucleus of the hypothalamus in response to stimulus exposure. We detected no differences in cFos and nonapeptide co-localization among stimulus groups. Subjects performed similar amounts of alloparental care toward related and unrelated neonates, but not other subadults or inanimate objects. Notably, caregiving did not differ based on kin-status. The lack of difference in alloparenting toward related and non-related neonates suggests that alloparental care in prairie voles primarily serves to provide subadults with parental practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.