Abstract

As part of the transition to a sustainable future, energy-efficient buildings are needed to secure users' comfort and lower the built environment's energy footprint and associated emissions. This article presents a novel, realistic and affordable solution to minimize the footprint of smart building energy systems and enable higher renewable energy use in the building sector. For this, an intelligent system is being developed using a rule-based automation approach that considers thermal comfort, energy prices, meteorological data, and primary energy use. In order to lower the installation cost and part of the environmental footprint, batteries are not used, and the heat pump's size is decreased via component integration. Also, different renewable resources are effectively hybridized using photovoltaic thermal panels and an innovative biomass heater to increase the share of renewable energy, enhance reliability, and shave peak load. In order to secure feasibility, the suggested framework is assessed from the techno-economic and environmental standpoints for 100 residential apartments in Stockholm, Sweden. Our results show that 70.8 MWh of renewable electricity is transferred to the local grid, and the remaining 111.5 MWh is used to supply the building's needs and power the electrically-driven components. The biomass heater meets more than 65% of the space heating demand, mainly at low solar power and high electricity prices, illustrating the value of integration strategies to reduce the system's dependability on the local grid. The results further reveal that most energy purchases during the cloudy days and nights are repaid through the sale of excess renewable production during the warmer hours, with a bidirectional connection with the grid. The monthly energy cost is less than 140 $/MWh for most of the years. The cost can be held low due to the exclusion of batteries and minimizing the heat pump size. The proposed system has a low emission index of 11.9 kgCO2/MWh and can reduce carbon dioxide emissions by 70 TCO2/year compared to using the supply from the Swedish energy mix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call