Abstract

Increasing renewable energy use is an essential strategy for mitigating climate change. Nevertheless, the sensitivity of renewable energy to climatic conditions means that the energy system’s vulnerability to climate change can also become larger. In this research, we used two integrated assessment models and data from four climate models to analyse climate change impacts on primary energy use at a global and regional scale under a low-level (RCP2.6) and a medium-level (RCP6.0) climate change scenario. The impacts are analysed on the energy system focusing on four renewable sources (wind, solar, hydropower, and biomass). Globally, small climate impacts on renewable primary energy use are found in both models (5% for RCP2.6 and 6% for RCP6.0). These impacts lead to a decrease in the use of fossil sources for most regions, especially for North America and Europe under the RCP60 scenario. Overall, IMAGE and GCAM provide a similar signal impact response for most regions. E.g. in Asia (excluding China and India), climate change induces an increase in wind and hydropower use under the RCP6.0 scenarios; however, for India, a decrease in solar energy use can be expected under both scenarios and models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.