Abstract
The mechanism of protein kinase C (PKC) activation by phosphatidyl-L-serine (PS) is highly specific and occurs with high cooperativity [Lee, M.-H., & Bell, R. M. (1989) J. Biol. Chem. 264, 14797-14805]. To further investigate the multiplicity and specificity of PS cofactor requirement, some of the PS molecules present in Triton X-100 mixed micelles were substituted with nonactivating phospholipids devoid of required amino or carboxyl functional groups. The ability of these phospholipids to spare or reduce the mole percent of PS required was determined. Addition of phosphatidyl-(3-hydroxypropionate) (PP) or phosphatidate (PA) reduced the mole percent of PS required for maximal activity from 10 to 4 mol %, and also reduced the cooperativity of activation with PS. In contrast, phosphatidylethanolamine did not alter the dependence on PS. Phosphatidylethanol (P-Et) reduced the PS requirement to 2-4 mol % and cooperatively less efficiently than PP or PA. Phosphatidylglycerol and phosphatidylinositol resemble P-Et in their ability to reduce PS requirements and cooperativity. Therefore, it appears that the ability of phospholipids to substitute for PS in PKC activation depends on the negative charge in the phospholipid head group and the efficiency of substitution appears to be directly related to the negative charge density. The presence of two acyl groups within the phospholipid cofactor proved important since lyso-PS and lyso-PA replaced a portion of PS molecules required less efficiently than P-Et. Sodium oleate and sodium dodecyl sulfate behaved like lyso-PS. When other anionic lipids are present, approximately four molecules of PS per micelle are required for maximal PKC activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have