Abstract

Coral reefs worldwide are receding because of detrimental human activities, and cryopreservation of coral larvae would ensure that their genetic biodiversity is not irremediably lost. In recent years, the vitrification and laser warming of coral propagules has demonstrated promising results. During cryopreservation, cellular membranes undergo substantial reconfigurations that may affect survival. Fat enrichment may alter the physical proprieties of cell membranes and improve resistance to low temperatures. Therefore, the aim of this study was to determine whether supplementation of exogenous lipids using liposomes would improve cryosurvival and further development of the vitrified and laser-warmed coral larvae of Seriatopora caliendrum and Pocillopora verrucosa. A vitrification solution (VS) composed of 2 M ethylene glycol (EG), 1 M propylene glycol (PG), 40% (w/v) Ficoll, and 10% gold nanoparticles (at a final concentration of 1.2 × 1018 particles/m3 and an optimised emission wavelength of 535 nm) was chosen. Coral larvae were subjected to vitrification with VS incorporating one of four lipid classes: phosphatidylcholine (PC), phosphatidylethanolamine (PE), erucic acid (EA), and linoleic acid (LA). Warming was achieved using a single laser pulse (300 V, 10 ms pulse width, 2 mm laser beam diameter). A significantly higher vitality rate was observed in S. caliendrum larvae subjected to vitrification and laser warming with EA-incorporated VS, and P. verrucosa larvae vitrified and laser warmed using PE-incorporated VS achieved a significantly higher settlement rate. Our study demonstrated that supplementation of exogenous lipids with liposomes enhances coral larvae cryotolerance and improves cryopreservation outcomes. Lipid enrichment may play a key role in cryobanking coral propagules, and in propagule development after thawing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.