Abstract
Coral reefs are disappearing worldwide as a result of several harmful human activities. The establishment of cryobanks can secure a future for these ecosystems. To design effective cryopreservation protocols, basic proprieties such as chilling tolerance and lipid content must be assessed. In the present study, we investigated chilling sensitivity and the effect of chilling exposure on the lipid content and composition of larvae belonging to 2 common Indo-Pacific corals: Seriatopora caliendrum and Pocillopora verrucosa. The viability of coral larvae incubated with 0.5, 1, and 2 M ethylene glycol (EG), propylene glycol (PG), dimethyl sulfoxide (Me2SO), methanol, or glycerol and kept at 5 °C for different time periods was documented. In addition, we investigated the content of cholesterol, triacylglycerol (TAG), wax ester (WE), sterol ester (SE), lysophosphatidylcholine, phosphatidylcholine, phosphatidylethanolamine, and several fatty acid (FA) classes in coral propagules incubated with 1 M PG or EG and kept at 5 °C for 6 h. Moreover, we examined seasonal changes in the aforementioned lipid classes in coral larvae. S. caliendrum incubated with 0.5 M PG or Me2SO and chilled for 2 h exhibited a viability rate of 11 ± 11%, whereas P. verrucosa exhibited a viability rate of 22 ± 14% after being chilled for 4 h. Furthermore, the results indicated that chilling exposure did not affect the content of any investigated lipid class in either species. The higher concentration of SE in P. verrucosa compared to S. caliendrum larvae may have contributed to the different cryotolerance displayed by the 2 larval species. A year-round lipid analysis of both coral larvae species revealed trends of homeoviscous adaptation and seasonal enhancement of lipid fluxes from symbionts to the host. During winter, the cholesterol/phospholipid ratio significantly increased, and P. verrucosa larvae exhibited an averagely decrease in FA chain lengths. During spring and summer, intracellular lipid content in the form of TAGs and WEs significantly increased in both species, and the average content of Symbiodiniaceae-derived FAs increased in P. verrucosa larvae. We concluded that the low cryotolerance displayed by S. caliendrum and P. verrucosa larvae is attributable to their chilling-sensitive membrane lipid profile and the high intracellular lipid content provided by their endosymbionts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.