Abstract
Fluorosis is a public health concern in 25 countries around the globe. The present study is about the mitigation of fluoride (F) toxicity by giving F-free water (FFW) and calcium (Ca). A study was conducted by taking 76 Wistar rats in two phases, phase I (6 months), where rats were randomly divided into four groups: normal-Ca diet (NCD) 0.5%; low-Ca diet (LCD) 0.25%; NCD + 100 ppm F and LCD + 100 ppm F in groups 1, 2, 3 and 4, respectively. F and Ca were given through water and diet respectively. Phase II is the reversal of fluorosis for 3 months, where LCD group 2 was treated with NCD. Groups 3 and 4 were divided into two subgroups each: 3X and 3Y, and 4X and 4Y, respectively. Groups 3X and 4X received FFW with NCD. Group 3Y continued as phase I and 4Y NCD and F. The biochemical expression, gene expression, biomechanical properties and DXA were studied by standard methods. The results revealed that in phase I, bone turnover was significantly increased whereas bone mineral content and biomechanical properties of group 4 were significantly decreased (p ≤ 0.05) as compared with that of all other groups. Trabecular separation and total porosity increased in groups 2 and 4. Expression of osteocalcin, osteonectin and osteopontin genes was significantly downregulated in group 4. Bone turnover in group 4X was normalised. Expressions of osteocalcin, osteonectin and osteopontin were upregulated after providing NCD and FFW. In conclusion, low calcium aggravates skeletal fluorosis which could be mitigated on supplementation of Ca and FFW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.