Abstract
Today, nanotechnology is becoming increasingly important among researchers around the world by helping them diagnose and treat various diseases that can threaten human life. Bismuth nanoparticles are among the numerous metal nanoparticles widely used due to their potential therapeutic applications. Variety of studies displayed the high potentials of bismuth nanoparticles in extraordinary antibacterial, antibiofilm, anticancer, and antioxidant effects, and it seems that these potentials can be used to address the challenges in the treatment of many diseases. They are among the metal nanoparticles biosynthesized by the green synthesis method in many studies. The use of green synthesis of nanoparticles has attracted the interest of many investigators because of its environmental friendliness, non-toxicity, and high stability. Microorganisms like bacteria, fungi, yeasts, actinomycetes, viruses, marine algae, and plants have been found to have the inherent potential to create metal nanoparticles intracellularly or extracellularly and are recognized as viable biofactories for the green synthesis of nanoparticles. The goal of this review article was to assess synthesized bismuth nanoparticles based on their green synthesis methods; properties in terms of shape, size, synthesis origin, and structure; and biological applications, including their antibacterial, antibiofilm, antioxidant, and cytotoxic uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.