Abstract

The reaction network of oxidative carbonylation of methanol (CH3OH) over CuY catalyst prepared by solid-state ion exchange of HY zeolite with CuCl was enriched by combination of in-situ diffuse reflectance infrared fourier transform spectroscopy and mass spectrometric. Based on the proposed mechanism of dimethyl carbonate formation on CuY in literature, this study mainly focused on the origin of the O atom in methoxyl and the reaction pathway for by-products formation. The interaction of the catalyst with different reactants and reactant mixtures (CH3OH, CH318OH, HCHO, O2, CH3OH/HCHO and CH318OH/CO/O2) was studied in detail. It was found that in the presence of CuOx or oxygen, methoxide species are generated by breaking of the O–H bond. Reaction of methoxide species with oxygen leads to the formation of formaldehyde (HCHO), followed by the generation of formate species through consecutive oxidation of HCHO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.