Abstract
TiO 2 /TiOF 2 nanohybrids were quickly synthesized through a hydrothermal process using titanium n-butoxide (TBOT), ethanol (C 2 H 5 OH) and hydrofluoric acid as precursors. The prepared nanohybrids underwent additional NaOH treatment (OH-TiO 2 /TiOF 2 ) to enhance their photocatalytic performance. The mechanism of NaOH affecting the pathway of transformation from TBOT (Ti precursor) to TiO 2 nanosheets was discussed. The synthesized TiO 2 /TiOF 2 and OH-TiO 2 /TiOF 2 were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy, X-ray diffraction pattern (XRD), Fourier infrared spectroscopic analysis (FT-IR), Photoluminescence emission spectra and UV–visible diffuse reflection spectra (UV–vis DRS). The photocatalytic activity and stability of synthesized samples were evaluated by degradation of methylene blue (MB) under the simulated solar light. The results showed that a larger ratio of TiO 2 to TiOF 2 in TiO 2 /TiOF 2 and OH-TiO 2 /TiOF 2 nanohybrids could allow for even higher MB conversion compared with only TiO 2 nanosheets. NaOH treatment can wash off the F ions from TiOF 2 and induce this larger ratio. The highest efficiency of MB removal was just above 90% in 1 h. Lower electron–hole pairs recombination rate is the dominant factor that induces the photocatalytic performance enhancement of TiO 2 /TiOF 2 nanohybrids. The synthesized OH-TiO 2 /TiOF 2 nanohybrids exhibit great potential in the abatement of organic pollutants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have