Abstract

This article presents a general method for estimating pairwise image correspondences, which is a fundamental problem in image analysis. The method consists of over-segmenting a pair of images into supervoxels. A forest classifier is then trained on one of the images, the source, by using supervoxel indices as voxel-wise class labels. Applying the forest on the other image, the target, yields a supervoxel labelling, which is then regularised using majority voting within the boundaries of the target's supervoxels. This yields semi-dense correspondences in a fully automatic, unsupervised, efficient and robust manner. The advantage of our approach is that no prior information or manual annotations are required, making it suitable as a general initialisation component for various medical imaging tasks that require coarse correspondences, such as atlas/patch-based segmentation, registration, and atlas construction. We demonstrate the effectiveness of our approach in two different applications: a) initialisation of longitudinal registration on spine CT data of 96 patients, and b) atlas-based image segmentation using 150 abdominal CT images. Comparison to state-of-the-art methods demonstrate the potential of supervoxel classification forests for estimating image correspondences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.