Abstract

Multi-atlas segmentation has been widely applied to the analysis of brain MR images. However, the state-of-the-art techniques in multi-atlas segmentation, including both patch-based and learning-based methods, are strongly dependent on the pairwise registration or exhibit huge spatial inconsistency. The paper proposes a new segmentation framework based on supervoxels to solve the existing challenges of previous methods. The supervoxel is an aggregation of voxels with similar attributes, which can be used to replace the voxel grid. By formulating the segmentation as a tissue labeling problem associated with a maximum-a-posteriori inference in Markov random field, the problem is solved via a graphical model with supervoxels being considered as the nodes. In addition, a dense labeling scheme is developed to refine the supervoxel labeling results, and the spatial consistency is incorporated in the proposed method. The proposed approach is robust to the pairwise registration errors and of high computational efficiency. Extensive experimental evaluations on three publically available brain MR datasets demonstrate the effectiveness and superior performance of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.