Abstract

The present work is related to the use of Petri nets structural techniques in the supervisory control of discrete event systems. A relevant property of the system behaviour under supervision is to be non-blocking, i.e. from any state reachable from initial state, it is always possible to reach a desirable (or marked) state. Recent works had shown that the synthesis of proper supervisors based on Petri net modelling of DES is an interesting approach. In this paper, we present a proper supervisor synthesis method based on a purely structural reasoning. This parametrized method is especially well-suited for a large class of discrete event systems, called G-Task, for modelling concurrent automated manufacturing systems with flexibility on routings and on synchronization patterns with shared resources. Also, it can be exploited for enforcing constraints on the reachability set of any bounded uncontrolled net.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call