Abstract

The article presents a methodology for supervised regionalization of data on a spatial domain. Defining a spatial process at multiple scales leads to the famous ecological fallacy problem. Here, we use the ecological fallacy as the basis for a minimization criterion to obtain the intended regions. The Karhunen-Loève Expansion of the spatial process maintains the relationship between the realizations from multiple resolutions. Specifically, we use the Karhunen-Loève Expansion to define the regionalization error so that the ecological fallacy is minimized. The contiguous regionalization is done using the minimum spanning tree formed from the spatial locations and the data. Then, regionalization becomes similar to pruning edges from the minimum spanning tree. The methodology is demonstrated using simulated and real data examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.