Abstract

Topology control is one of the most important techniques used in wireless sensor networks; to some extent it can reduce energy consumption in which each node is capable of minimizing its transmission power level while preserving network connectivity. Reducing energy consumption has been addressed through different aspects till now. In this paper, we present a minimum spanning tree- (MST-) based algorithm, called noncooperative minimum spanning tree (NMST), for topology control in wireless multihop networks. In this algorithm, each node constructs its minimum power-cost spanning tree which is a tree and can connect the node with one hop away from its neighbor node in constructed topology. In addition we address the power-cost allocation problem when node acts selfishly. A class of strategies is proposed which construct minimum power-cost spanning tree such that the sum of the power-cost (as proxy of weight), at the same time, is a strong Nash equilibrium for a noncooperative game associated with the problem of efficient topology construction. Simulation results show that NMST can maximize the sensor network lifetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.