Abstract

PurposeThe main objectives of this study are to (1) develop and test a cost contingency learning model that can generalize initially estimated contingency amounts by analyzing back the multiple project changes experienced and (2) uncover the hidden link of the learning networks using a curve-fitting technique for the post-construction evaluation of cost contingency amounts to cover cost risk for future projects.Design/methodology/approachBased on a total of 1,434 datapoints collected from DBB and DB transportation projects, a post-construction cost contingency learning model was developed using feedforward neural networks (FNNs). The developed model generalizes cost contingencies under two different project delivery methods (i.e. DBB and DB). The learning outputs of generalized contingency amounts were curve-fitted with the post-construction schedule and cost information, specifically aiming at uncovering the hidden link of the FNNs. Two different bridge projects completed under DBB and DB were employed as illustrative examples to demonstrate how the proposed modeling framework could be implemented.FindingsWith zero or negative values of change growth experienced, it was concluded that cost contingencies were overallocated at the contract stage. On the other hand, with positive values of change growth experienced, it was evaluated that set cost contingencies were insufficient from the post-construction standpoint. Taken together, this study proposed a tangible post-construction evaluation technique that can produce not only the plausible ranges of cost contingencies but also the exact amounts of contingency under DBB and DB contracts.Originality/valueAs the first of its kind, the proposed modeling framework provides agency engineers and decision-makers with tangible assessments of cost contingency coupled with experienced risks at the post-construction stage. Use of the proposed model will help them evaluate the allocation of appropriate contingency amounts. If an agency allocates a cost contingency benchmarked from similar projects on aspects of the base estimate and experienced risks, a set contingency can be defended more reliably. The main findings of this study contribute to post-construction cost contingency verification, enabling agency engineers and decision-makers to systematically evaluate set cost contingencies during the post-construction assessment stage and achieving further any enhanced level of confidence for future cost contingency plans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.