Abstract

Identifying cancer subtypes by integration of multi-omic data is beneficial to improve the understanding of disease progression, and provides more precise treatment for patients. Cancer subtypes identification is usually accomplished by clustering patients with unsupervised learning approaches. Thus, most existing integrative cancer subtyping methods are performed in an entirely unsupervised way. An integrative cancer subtyping approach can be improved to discover clinically more relevant cancer subtypes when considering the clinical survival response variables. In this study, we propose a Survival Supervised Graph Clustering (S2GC)for cancer subtyping by taking into consideration survival information. Specifically, we use a graph to represent similarity of patients, and develop a multi-omic survival analysis embedding with patient-to-patient similarity graph learning for cancer subtype identification. The multi-view (omic)survival analysis model and graph of patients are jointly learned in a unified way. The learned optimal graph can be unitized to cluster cancer subtypes directly. In the proposed model, the survival analysis model and adaptive graph learning could positively reinforce each other. Consequently, the survival time can be considered as supervised information to improve the quality of the similarity graph and explore clinically more relevant subgroups of patients. Experiments on several representative multi-omic cancer datasets demonstrate that the proposed method achieves better results than a number of state-of-the-art methods. The results also suggest that our method is able to identify biologically meaningful subgroups for different cancer types. (Our Matlab source code is available online at github: https://github.com/CLiu272/S2GC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call