Abstract

As medical safety and drug regulation gain heightened attention, the detection of spurious drug-drug interactions (DDI) has become key in healthcare. Although current research using graph neural networks (GNNs) to predict DDI has shown impressive results, it often fails to account for false DDI in the constructed DDI networks. Such inaccuracies caused by data errors, false alarms, or incorrect drug details can skew the network's structure and hinder the accuracy of GNN-based predictions. To tackle this challenge, we propose ANSM, a network-enhancement method specifically designed to identify and attenuate spurious links between drugs for ensuring the accuracy of DDI networks. ANSM integrates three key components: the feature extractor, the network optimizer, and the discriminative classifier. The feature extractor captures local structural features from drug node pairs, while the network optimizer leverages network information to improve feature extraction and reduce the impact of spurious DDI links. The discriminative classifier then identifies potential spurious links. Experimental results demonstrate that ANSM outperforms state-of-the-art methods in identifying spurious DDI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call