Abstract

Image segmentation is widely used as an initial phase of many image analysis tasks. It is often advantageous to first group pixels into compact, edge-respecting superpixels, because these reduce the size of the segmentation problem and thus the segmentation time by an order of magnitudes. In addition, features calculated from superpixel regions are more robust than features calculated from fixed pixel neighborhoods. We present a fast and general multiclass image segmentation method consisting of the following steps: (i) computation of superpixels; (ii) extraction of superpixel-based descriptors; (iii) calculating image-based class probabilities in a supervised or unsupervised manner; and (iv) regularized superpixel classification using graph cut. We apply this segmentation pipeline to five real-world medical imaging applications and compare the results with three baseline methods: pixelwise graph cut segmentation, supertexton-based segmentation, and classical superpixel-based segmentation. On all datasets, we outperform the baseline results. We also show that unsupervised segmentation is surprisingly efficient in many situations. Unsupervised segmentation provides similar results to the supervised method but does not require manually annotated training data, which is often expensive to obtain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.