Abstract

A novel unsupervised color image segmentation method based on graph cuts with multi-components is proposed, which finds an optimal segmentation of an image by regarding it as an energy minimization problem. First, L*a*b* color space is chosen as color feature, and the multi-scale quaternion Gabor filter is employed to extract texture feature of the given image. Then, the segmentation is formulated in terms of energy minimization with an iterative process based on graph cuts, and the connected regions in each segment are considered as the components of the segment in each iteration. In addition, canny edge detector combined with color gradient is used to remove weak edges in segmentation results with the proposed algorithm. In contrast to previous algorithms, our method could greatly reduce computational complexity during inference procedure by graph cuts. Experimental results demonstrate the promising performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.