Abstract

This contribution is an attempt to explore the effectiveness of a series of newly obtained thermoplastic elastomers (TPEs) as a toughening agent for modifying poly(lactic acid) (PLA). The TPEs, including ionically modified isotactic polypropylene-graft-PLA (iPP-g-PLA) copolymers with explicit graft length, graft density, and ionic group content, and an iPP-g-PLA copolymer with a very high molecular weight and explicit graft density, were elaborately designed and synthesized. The semicrystal or rubbery copolymer backbone originated from iPP was designed to improve the toughness and maintain a relatively high strength, while the grafted PLA side chain was to ensure a high level of compatibility with the PLA matrix. To obtain further enhancement in interfacial reinforcement, the imidazolium-based ionic group was also added during graft onto reaction. All of these graft copolymers were identified with randomly distributed PLA branches, bearing a very high molecular weight ((33–398) × 104) and very high PLA content (57.3–89.3 wt %). Unprecedentedly, with a very small amount of newly designed TPE, the modified PLA blends exhibited a significantly increased elongation at break (up to about 190%) and simultaneously retained the very high stiffness and excellent transparency. The nanometer-scale phase-separated particles with good compatibility and refractive index matching to the PLA matrix were demonstrated to play a crucial role in the excellent performance. The findings suggested that the newly designed iPP-g-PLA copolymers are very economic, promising, and effective modifying agents for developing highly transparent and tough PLA-based sustainable materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.