Abstract

In recent years, interest in renewable energy as a substitute for power generation using coal has increased. As a next-generation power system, the Organic Rankine cycle (ORC) system, which requires a multi-stage turbine or a supersonic turbine to generate a high power, has been shown to have high potential for such uses. In this paper, a dense gas is chosen as a working fluid and a supersonic nozzle is designed for a supersonic turbine with advantages in terms of cost, power density and layout. Two stators are designed using the Method of characteristics (MOC) for air and dense gas. To validate the numerical model, the nozzle designed for the air is compared to that of a PIV experiment from the open literature, and the results indicate a reasonable agreement. The nozzle for the dense gas is different as that needed for air. Therefore, the modified MOC is applied based on a polytropic assumption. In conclusion, an estimation of the performance is implemented with loss coefficients for a different number of blades. The number of blades is shown to be proportional to the loss coefficient. For example, the case with the biggest numbers of blades is affected the most by the shock effect that occurs at the trailing edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.