Abstract

Considered here is the effect of multistage coupling on the dynamics of a rotor consisting of eight bladed discs on a solid shaft. Each bladed disc had a different number of rotor blades. Free vibrations were examined using finite element representations of rotating single blades, bladed discs, and the entire rotor. In this study, the global rotating mode shapes of flexible tuned bladed discs-shaft assemblies were calculated, taking into account rotational effects, such as centrifugal stiffening. The thus obtained natural frequencies of the blade, the shaft, the bladed disc, and the entire shaft with discs were carefully examined to discover resonance conditions and coupling effects. This study found that the flexible modes of the tuned bladed discs affected by shaft motion were those with zero, one and two nodal diameters. In these modes shaft deflection was clearly visible. In forced vibration analysis a different EO excitation was applied for each stage. The importance of using models with different numbers of blades on each disc is apparent when compared with earlier results concerning discs with identical numbers of blades. Here the model of 8 discs with an equal number of blades on each disc is referred to as (Model 1), and the model of 8 discs with a different number of blades on each disc is referred to as (Model 2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call