Abstract

This study provides an overview on the effect of porosity on free vibrations and more importantly aeroelastic stability margins of cylindrical shells. A general formulation for cylindrical shells is first developed including the effects of shear deformation and rotary inertia along with Sander’s rigid body rotation modification. Two porosity distributions of even and uneven are considered for functionally graded shells. The most general form of power-law model which is known as four-parameter power-law is utilized to provide a clear understanding for the qualification of functionally graded material. A Ritz-based solution algorithm being capable of representing all combinations of symmetric and asymmetric boundary conditions by a penalty method is also introduced. In addition to the capability of satisfying all boundary conditions, the presented solution method is very fast in terms of convergence and computational effort. Various parametric studies are provided and practical results are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call