Abstract

In this paper a transient dynamic finite element analysis is presented to study the response of centrally impacted delaminated composite pretwisted cylindrical shells. An eight noded isoparametric plate bending element is employed in the finite element formulation. Effects of transverse shear deformation and rotary inertia are included. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark’s time integration algorithm. Parametric studies are performed in respect of relative size of delamination and angle of twist for graphite-epoxy composite cylindrical shallow shells subjected to low velocity normal impact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.