Abstract

A polysulfone spinning solution used recently to produce enhanced selectivity gas separation hollow fiber membranes was rheologically assessed using a rotational rheometer and an optical shear cell. Effects of temperature and shear rate on viscosity, power law behavior and normal force provided some clues regarding phase inversion and molecular orientation. At relatively low temperatures, phase inversion may occur in the absence of a shear field. At moderately low temperatures, phase inversion may be induced by applied shear. At higher temperatures, phase inversion is not induced by shear but rather shear induces molecular orientation. The results suggest that, unless spinning at low temperature, extrusion shear does not directly induce demixing during membrane formation but, instead, is linked indirectly to phase inversion through induced molecular orientation which, in turn, affects the subsequent dry or wet precipitation stages in spinning. This work is a step towards the construction of phase diagrams and determining their distortion in shear fields. Such knowledge, coupled with deeper insights into induced polymer molecule orientation, would enable further improvements in spinning techniques and membrane performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.