Abstract
Cellulose acetate spinning solution used to produce reverse osmosis (RO) hollow fiber membranes was rheologically assessed using a rotational rheometer and an optical shear cell. Rheology measurements which involved flow curves were carried out so as to obtain the values of power law coefficients, n and k. The power law behaviour, normal force and flow profiles generated provided clues regarding phase inversion and molecular orientation. These rheological results are then correlated to the performance of cellulose acetate RO hollow fibers spun at different extrusion shear rates. The results suggest that extrusion shear is linked indirectly to phase inversion through induced molecular orientation, which in turn, affects the subsequent dry/wet precipitation stages in spinning. As the extrusion shear rate increases, the level of shear experienced at the walls of the spinneret also increases, thus leading to greater molecular orientation, resulting in membranes with higher rejection and flux rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.