Abstract
The connection of the operators V, building up the Kossakowski-Lindblad generator, with the asymptotic states of the corresponding completely positive quantum-maps is discussed. Maps leading to decoherence are constructed, the importance of zero-modes in the absolute value [Formula: see text] of V for the generation of pure states from arbitrary mixed states is illustrated. The universal rôle of equipartite states appears when unitary V are chosen. The 'damped oscillator model' is generalized to yield Bose and Fermi distributions as asymptotic states for systems described by a Hamiltonian and other constants of motion. Calculations are performed in finite dimensional Hilbert spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.