Abstract

Many entanglement measures are first defined for pure states of a bipartite Hilbert space, and then extended to mixed states via the convex roof extension. In this article we alter the convex roof extension of an entanglement measure, to produce a sequence of extensions that we call $f$-$d$ extensions, for $d \in \mathbb{N}$, where $f:[0,1]\to [0, \infty)$ is a fixed continuous function which vanishes only at zero. We prove that for any such function $f$, and any continuous, faithful, non-negative function, (such as an entanglement measure), $\mu$ on the set of pure states of a finite dimensional bipartite Hilbert space, the collection of $f$-$d$ extensions of $\mu$ detects entanglement, i.e. a mixed state $\rho$ on a finite dimensional bipartite Hilbert space is separable, if and only if there exists $d \in \mathbb{N}$ such that the $f$-$d$ extension of $\mu$ applied to $\rho$ is equal to zero. We introduce a quantum variational algorithm which aims to approximate the $f$-$d$ extensions of entanglement measures defined on pure states. However, the algorithm does have its drawbacks. We show that this algorithm exhibits barren plateaus when used to approximate the family of $f$-$d$ extensions of the Tsallis entanglement entropy for a certain function $f$ and unitary ansatz $U(\theta)$ of sufficient depth. In practice, if additional information about the state is known, then one needs to avoid using the suggested ansatz for long depth of circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.