Abstract

Understanding and controlling the drug solubilization in digestive environment is of great importance in the design of lipid based solid dispersion (LBSD) for oral delivery of poorly aqueous soluble drugs. In the current study we determined the extent of drug solubilization and supersaturation of supersaturating lipid based solid dispersion which is governed by formulation variables like drug payload, lipid composition, solid carrier properties and lipid to solid carrier ratio. Initially, the impact of lipid chain length and drug payload on drug solubilization in lipid preconcentrate and dispersibility were evaluated to design liquid LbF of the model antiretroviral drug, atazanavir. The temperature induced supersaturation method enhanced the drug payload in medium chain triglyceride formulation at 60 °C. Further, the selected liquid supersaturated LbF was transformed into solid state LbF by employing different solid carriers including silica (Neusilin® US2 and Aerosil® 200), clay (Montmorillonite and Bentonite) and polymer (HPMC-AS and Kollidon® CL-M). The fabricated LBSDs were evaluated for solid state characterization to identify the physical nature of drug. In vitro digestion studies were conducted using pH-stat lipolysis method to assess the supersaturation propensity in aqueous digestive phase. Results revealed that LBSDs with silica and polymer carriers showed maximum drug solubilization throughout experiment compared to liquid LbF. The ionic interaction between drug-clay particles significantly reduced the ATZ partitioning from clay based LBSDs. LBSDs with dual purpose solid carrier like HPMC-AS and Neusilin® US2 offers the potential to improve drug solubilization of ATZ for physiologically relevant time. Lastly, we conclude that evaluation of formulation variables is crucial to achieve optimal performance of supersaturating LBSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.