Abstract
Experiments on inelastic scattering of neutrons show that the crystal field spectra for high-Tc super-conductors R1−yCayBa2Cu3Ox≈7 (R=Ho, Er; 0 > y > 0.25) have two spectral components associated with optimally doped and overdoped clusters, respectively. An increase in the calcium concentration does not affect the local density of charge carriers in clusters, but changes the concentration of clusters themselves and, hence, the spectral weights of the spectral components. In light of such a “two-phase” pattern observed earlier for cuprate-based superconductors with a doping level below optimal, an increase in the charge carrier concentration leads to a smooth transition (crossover) from the underdoped regime to the overdoped one. The obtained results show, however, that these two regions of the phase diagram differ qualitatively in the form of charge distribution in CuO2 planes responsible for superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.