Abstract

Titanium Ti-6Al-4V alloys are known to exhibit interesting superplastic properties for different conditions of temperature and strain rate, depending on the initial grain size. Even if superplasticity is generally explained in terms of grain boundary sliding (GBS) accompanied by several accommodation mechanisms, it appears that the micromechanisms of superplasticity are still controversial especially at the grain scale and even more at lower scale. These micromechanisms, involving microstructural evolution, depend also on the SPF conditions (temperature, strain rate and initial microstructure). In this study, the flow stress in the Ti-6Al-4V alloy is investigated for different strain rate and for temperature in the range of the α/β transformation. The preferred orientation evolution of alpha phase grains for different percentage of deformation is studied for a non-optimal SPF regime (920°C-10-4 s-1) in order to highlight the microstructural evolution and so the deformation mechanisms involved. For that, mechanical interrupted test combined with Scanning Electron Microscopy (SEM) and Electron Back Scatter Diffraction (EBSD) are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.