Abstract
A comparison of the superplastic deformation behaviour of Ti-6Al-4V (wt%) between 760 and 940‡ C and Ti-6Al-2Sn-4Zr-2Mo between 820 and 970‡ C has been carried out on sheet materials possessing similar as-received microstructures. High tensile elongations were obtained with maximum values being recorded at 880‡ C for Ti-6Al-4V (Ti-6/4) and at 940‡ C for Ti-6Al-2Sn-4Zr-2Mo (Ti-6/2/4/2), under which conditions both alloys possessed aΒ phase proportion of approximately 0.40. For a given deformation temperature the Ti-6/4 alloy had a slightly lower flow stress than the Ti-6/2/4/2, and this was attributed to the lowerΒ phase proportion in the latter alloy. However, at the respective optimum deformation temperatures the Ti-6/2/4/2 alloy had the lower flow stress. The results show that suitably processed Ti-6/2/4/2 alloy is capable of withstanding substantial superplastic strains at relatively low flow stresses, although the optimum deformation temperature is higher for this alloy than for Ti-6/4 material possessing a similar microstructure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have