Abstract

The contamination of foodstuffs with aflatoxins B1 (AFB1) as carcinogen/mutagens toxin produced by Aspergillus fungi that are a major threat to the economy, safe food supply, and human health. To, we present a facile wet-impregnation and co-participation strategies for the construction of a novel superparamagnetic MnFe biocomposite (MF@CRHHT), in which dual metal oxides MnFe were anchored in/on agricultural/forestry residues (chitosan/rice husk waste/hercynite hybrid nanoparticles) and applied for rapid AFB1 detoxification by destroying in a non-thermal/microbial way. Structure, and morphology were comprehensively characterized by various spectroscopic analyses. The AFB1 removal in PMS/MF@CRHHT system followed pseudo-first-order kinetics, and exhibited excellent efficiency (99.3 % in 20 min and 83.1 % in 5.0 min) over a broad pH range (5.0–10.0). Importantly, relationship between high efficiency and physical-chemical properties, and mechanistic insight reveals that the synergistic effect could be related to the formation MnFe bond in MF@CRHHT and then mutual electron transfer between them to enhanced electron density and generate reactive oxygen species. An AFB1 decontamination pathway proposed was based on the free radical quenching experiments and analysis of the degradation intermediates. Thus, the MF@CRHHT can be applied as an efficient, cost-effective, recoverable, environment-friendly and highly efficient biomass-based activator for remediate pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.