Abstract

Aflatoxin B1 (AFB1) is a carcinogenic substance produced by fungi of genus Aspergillus, especially Aspergillus flavus. Few nanograms of AFB1 that permeated through the skin is sufficient to cause liver cancer and stunted growth. In this study, a rapid aptamer-based assay for AFB1 was developed using the fluorescence quenching property of graphene oxide (GO) and a fluorescein amidite (FAM)-modified aptamer specific to AFB1. The aptamer, modified with the fluorescence dye FAM on its 5′-end, was used as a probe. Once bound by AFB1, a conformational change of the aptamer was caused that led to its interaction with the well-known fluorescence quencher GO, resulting in a decrease of the fluorescence intensity of the system. In the absence of AFB1, the fluorescence intensity remained unchanged. The aptamer-based AFB1 assay process was conducted through 3 steps within 40min. The aptamer was incubated with AFB1 before the addition of GO. The amount of AFB1 present was measured by the change in fluorescence intensity. The detection system was evaluated with standard solutions of AFB1 of various concentrations. The results showed that the fluorescence intensity decreased linearly as the concentration of AFB1 gradually increased. Although the assay was specific to AFB1, there was slight interference by other types of aflatoxin. When the assay was applied to a real sample, the limit of detection was 4.5 ppb, which was within the wide detection range of up to 300ppb with good linearity. Thus, this biosensor is considered to be competitive with the conventional detection methods in the field owing to its wide detection range and assay rapidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call