Abstract

Cobalt iron oxide nanotube arrays with various wall thicknesses were prepared by atomic layer deposition in porous anodic alumina template. Nanotubes uniform in thickness and homogeneous in composition can be obtained with aspect ratios on the order of 50. These nanotubes have a polycrystalline spinel structure. Both the mean grain size and the grain size distribution increase with the tube wall thickness. Correspondingly, their magnetic properties (remanence and coercive field) also have a strong dependence on the thickness for measurements carried out at 300 K. This dependence is attributed to the superparamagnetic behavior of the grains that constitute the nanotube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.