Abstract

In this paper, Porous anodic alumina (PAA) template with highly ordered nanopores structure was synthesized on aluminum foils by two step anodization process. PAA template has hexagonal pores with average size between 30 and 180nm. L-cysteine (L-Cys) functionalized cadmium selenide nanocrystals (CdSe NCs) were successfully embedded inside PAA layers by simple immersion in aqueous solution. The effect of pore diameter enlargement on the microstructure of CdSe NCs/PAA films was systematically studied by FE-SEM, XRD, EDX, Raman, UV–VIS absorbance and PL analysis. FE-SEM microscopy was used to investigate the surface morphology of PAA templates before and after CdSe NCs deposition. XRD investigation demonstrates that CdSe NCs into PAA templates were cubic in nature with zinc-blende structure. Raman measurements exhibit the characteristic modes of CdSe on the PAA layers as well as the films crystallinity as function of widening pores diameter. Optical properties of deposited CdSe NCs on PAA templates have been investigated using optical absorption and PL techniques. Photoluminescence spectroscopy has been used to determine the bandgap energy and the average size of CdSe NCs deposited on PAA layer. This method involves fitting the experimental spectra, using a model based on quantum confinement of electrons in CdSe nanocrystals having spherical and cylindrical forms (Quantum Dots (QDs) and Quantum Wires (QWs)). This model allows correlation between the PL spectra and the microstructure of the CdSe/PAA. Both photoluminescence and optical absorption show that the PL peak energy and the optical absorption edge of CdSe NCs/PAA exhibit similar behavior with changes in nanostructure size. The spectral behaviors of optical absorption and PL are consistent with a quantum confinement model throughout the sizes and shapes of the CdSe nanocrystals of the luminescent films. The effective bandgap energies determined from the PL peaks position are in good agreement with those estimated from the optical absorbance spectra.Investigations have shown that optical properties of CdSe/PAA nanostructure were influenced by the pores sizes of PAA. It was observed an increase in CdSe NCs size from 2.22 to 2.56nm when the average pores diameter of PAA increases from 30 to 180nm. This finding indicates an enhancement in PL intensity and a red-shift in PL emission peaks from 2.35 to 2.14eV. By applying the quantum confinement model, we demonstrated that the redshift of PL peak is attributed to the change of CdSe NCs size with the pores diameter and that their spectral behaviors are related to the shape and the size distribution of the nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call