Abstract

Given the ubiquity of iodinated disinfection by-products (I-DBPs) in drinking water and their prominent toxicity, it is of vital significance to evaluate I-DBPs toxicity and explore the underlying mechanism. The toxicity of iodoacetic acid (IAA), a typical type of I-DBPs, might be linked with oxidative stress. However, it remains unknown for the response of antioxidant enzyme superoxide dismutase (SOD) in the mouse primary hepatocytes when exposed to IAA and the underlying mechanism. This study explored SOD response to IAA and the underlying mechanisms at the molecular and cellular levels. Under IAA exposure, the observed increase of SOD activity in the hepatocytes was caused by the increase of SOD production via ROS stimulation and the increase of SOD molecular activity. Molecular experiments showed that IAA binds to SOD molecule mainly via electrostatic forces with one binding site around the active site and six binding sites in the surface of protein. The binding interaction leads to the conformational changes of SOD and the disruption of protein aggregates. This work could offer basic data for the comprehensive understanding of the adverse effects of IAA and references for assessing the harmful effects of DBPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call