Abstract
In this paper, a superlinear elliptic equation whose coefficient diverges on the boundary is studied in any bounded domain Ω under the zero Dirichlet boundary condition. Although the equation has a singularity on the boundary, a solution is smooth on the closure of the domain. Indeed, it is proved that the problem has a positive solution and infinitely many solutions without positivity, which belong to C 1 ( Ω ¯ ) or C 2 ( Ω ¯ ) . Moreover, it is proved that a positive solution has a higher order regularity up to C ∞ ( Ω ¯ ) .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.