Abstract

Superlattice (SL) structures of Ba2FeMoO6/Ba0.5Sr0.5TiO3 were grown via pulsed laser deposition on high quality ultra-smooth SrTiO3 substrates. N number of ferroelectric Ba0.5Sr0.5TiO3 layers were grown on five layers of ferromagnetic Ba2FeMoO6 and their structural, magnetic, transport, and magneto-transport properties were examined, focusing on the effects of superlattice periodicity of Ba0.5Sr0.5TiO3 layers. XRD analysis of SLs proved their layered superlattice structure. Magnetic study of the SLs showed increment of saturation magnetization and decrease of Curie temperature when compared to magnetization of pure Ba2FeMoO6 thin film. Magneto-transport measurement showed the presence of negative magneto-resistance in all superlattice samples, similar to magneto-transport behavior of pure Ba2FeMoO6 thin film. Hall measurement and transport study showed a consistent increment of anomalous Hall effect and temperature dependent conductivity, respectively, with the number of Ba0.5Sr0.5TiO3 layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call