Abstract

The manuscript represents miniaturized two-radiating element-based MIMO antennas for the frequency span of 1 THz to 20 THz. Five MIMO antenna structures are designed and analysed by modifying the shape of radiating elements and ground regions to attain better performance. The proposed structures’ performance is compared in terms of return loss, isolation, total gain, directivity, radiation pattern, directivity, peak gain, ECC, TARC, CCL, and TARC. The presented design provides the minimum return loss of −50.85 dB, maximum isolation of 38 dB, maximum bandwidth (S11< −10 dB) of 6.99 THz, maximum normalized directivity of 75°, and peak directivity of 4.635 dB. In addition, the other MIMO performance characteristics, such as the Diversity Gain (DG), Envelop Correlation Coefficient (ECC), Channel Capacity Loss (CCL), and Total Active Reflection Coefficient (TARC) are all within acceptable range. Finally, the presented design is compared with other relevant designs, and a good performance is observed. The proposed structure provides the solution for a superlative MIMO antenna with ultra-wideband, high gain, and compact structure. The proposed design is used for the B5G, THz wave radar, vehicular communications, astronomical radiometric applications imaging, health care, sensing, screening for weapons, explosives, and biohazards identification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call