Abstract
We investigate whether IMRT optimization based on generalized equivalent uniform dose (gEUD) objectives for organs at risk (OAR) results in superior dosimetric outcomes when compared with multiple dose-volume (DV)–based objectives plans for patients with intact breast and postmastectomy chest wall (CW) cancer. Four separate IMRT plans were prepared for each of the breast and CW cases (10 patients). The first three plans used our standard in-house, physician-selected, DV objectives (phys-plan); gEUD-based objectives for the OARs (gEUD-plan); and multiple, “very stringent,” DV objectives for each OAR and PTV (DV-plan), respectively. The fourth plan was only beam-fluence optimized (FO-plan), without segmentation, which used the same objectives as in the DV-plan. The latter plan was to be used as an “optimum” benchmark without the effects of the segmentation for deliverability. Dosimetric quantities, such as V 20Gy for the ipsilateral lung and mean dose (D mean) for heart, contralateral breast, and contralateral lung were used to evaluate the results. For all patients in this study, we have seen that the gEUD-based plans allow greater sparing of the OARs while maintaining equivalent target coverage. The average ipsilateral lung V 20Gy reduced from 22 ± 4.4% for the FO-plan to 18 ± 3% for the gEUD-plan. All other dosimetric quantities shifted towards lower doses for the gEUD-plan. gEUD-based optimization can be used to search for plans of different DVHs with the same gEUDs. The use of gEUD allows selective optimization and reduction of the dose for each OAR and results in a truly individualized treatment plan.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have