Abstract
Broccoli and cauliflower are among the most regeneratively intractable genotypes found in the brassicaceae. To develop a method for transfer of the gene encoding S-adenosylmethionine hydrolase (SAMase) into inbred broccoli and cauliflower germplasm, we investigated the morphogenic competence and Agrobacterium susceptibility of a wide range of tissues of varied source. Appropriately controlled expression of the SAMase gene should, theoretically, reduce the plant's capacity for ethylene biosynthesis and extend the post harvest shelf life of the flower head. Through examination of the in vitro response of a wide range of tissues we identified procedures which support caulogenesis from 100% of explants, each producing more than 30 shoots which readily convert to plantlets. Studies with several wild type and disarmed Agrobacterium strains, and utilization of the binary vector system and appropriate marker and reporter genes, led to the identification of methods for high frequency T-DNA transfer to explant tissues and the flow frequency of transgenic plants containing SAMase gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.