Abstract
NaNbO3 (NN)-based dielectric ceramics for energy storage have garnered significant interest due to their high saturation polarization, low residual polarization, and superior breakdown strength (Eb). However, the low recoverable energy storage density (Wrec) and efficiency (η) significantly limited their practical application. Herein, BiFeO3 (BF) was incorporated into NN to optimize the energy storage performance. The NN-BF ceramics exhibited pronounced antiferroelectric (AFE) relaxor phase, alongside grain size reduction and Eb enhancement, which contributed to a significant increase of Wrec and η. Specially, the optimum Wrec of 4.43 J/cm³ and η of 71.51 % were achieved at the composition of 0.9NN-0.1BF. Besides, stable energy storage performance was maintained over a wide temperature range (20–120 °C). These results highlight the potential of NN-BF relaxor AFE ceramics as promising candidates for high-performance energy storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.