Abstract
Fundamental challenges and goals of the cognitive algorithms are moving super-intelligent machines and super-intelligent humans from dreams to reality. This paper is devoted to a technical way to reach some specific aspects of super-intelligence that are beyond the current human cognitive abilities. Specifically the proposed technique is to overcome inabilities to analyze a large amount of abstract numeric high-dimensional data and finding complex patterns in these data with a naked eye. Discovering patterns in multidimensional data using visual means is a long-standing problem in multiple fields and Data Science and Modeling in general. The major challenge is that we cannot see n-D data by a naked eye and need visualization tools to represent n-D data in 2-D losslessly. The number of available lossless methods is quite limited. The objective of this paper is expanding the class of such lossless methods, by proposing a new concept of Generalized Shifted Collocated Paired Coordinates. The paper shows the advantages of proposed lossless technique by proving mathematical properties and by demonstration on real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.