Abstract

The Lie—Poisson algebra so(N + 1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the N-dimensional spherical, Euclidean, hyperbolic, Minkowskian, and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N — 3 functionally independent constants of motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky—Winternitz system to the above six spaces, while the latter is a generalization of the Kepler—Coulomb potential, for which the Laplace—Runge—Lenz N vector is also given. All the systems and constants of motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call