Abstract
We prepared super-hydrophobic nanocellulose films using a non-toxic octadecylamine/polydopamine system. Octadecylamine, a low surface energy material, was used to provide hydrophobic alkyl long chains. Polydopamine was produced by dopamine under alkaline conditions, creating an adhesive substance, which reinforced the hydrophobic long chains and increased the surface roughness of nanocellulose. The effects of reagent concentration, reaction temperature, and reaction time on hydrophobicity were then investigated. The results showed that with a 1:1 mass ratio of nanocellulose to octadecylamine, and reacting at 60 °C for 4 h, the contact angle of the obtained composite membrane reached 168.2°. Scanning electron microscope images revealed that the modified nanocellulose had a smaller particle size and more uniform distribution, which effectively improved the hydrophobicity of the nanocellulose. Thus, the green preparation of superhydrophobic films with high-temperature resistance and wear resistance was realized, which contributed to the high-value utilization of nanocellulose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have