Abstract
Abstract Passive radiative cooling is an energy-free cooling method by exchanging thermal radiation with the cold universe through the transparent atmospheric window. Spectrum tailoring of the radiative cooler is the key to daytime radiative cooling in previously reported works. In addition, radiative coolers with large-scale fabrication and self-cleaning characteristics should be further developed to improve their industrial applicability. Herein, we propose a bilayer radiative cooling coating with the superhydrophobic property and a scalable process, by covering TiO2/acrylic resin paint with a silica/poly(vinylidene fluoride-co-hexafluoropropylene) (SiO2/P(VdF-HFP)) composite masking layer. The strong Mie scattering in TiO2/acrylic resin paint contributes to high solar reflection, while the SiO2/P(VdF-HFP) masking layer is responsible for superhydrophobicity and synergetic solar reflection in the ultraviolet band, resulting in an effective solar reflectivity of 94.0 % with an average emissivity of 97.1 % and superhydrophobicity with a water contact angle of 158.9°. Moreover, the as-fabricated coating can be cooled to nearly 5.8 °C below the temperature of commercial white paint and 2.7 °C below the local ambient temperature under average solar irradiance of over 700 W m−2. In addition, yearly energy saving of 29.0 %–55.9 % can be achieved after the coating is applied to buildings in Phoenix, Hong Kong, Singapore, Guangzhou, and Riyadh.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.