Abstract

Superhydrophobic, flexible, and ultrahigh-performance electromagnetic interference (EMI) shielding papers are of paramount importance to safety and long-term service under external mechanical deformations or other harsh service environments because they fulfill the growing demand for multipurpose materials. Herein, we fabricated multifunctional papers by incorporating sputter-deposited nickel nanoparticles (NiNPs) and a fluorine-containing coating onto cellulose filter papers coated with silver nanowires (AgNWs). AgNW networks with sputter-deposited NiNPs provide outstanding magnetic properties, electrical conductivity, and EMI shielding performance. At an AgNW content of 0.109 vol % and a NiNP content of 0.013 mg/cm2, the resultant papers exhibit a superior EMI shielding effectiveness (SE) of 88.4 dB. Additionally, the fluorine-containing coating endows the resultant papers with a high contact angle of 149.7°. Remarkably, the obtained papers still maintain a high EMI SE even after 1500 bending cycles or immersion in water, salt, or strong alkaline solutions for 2 h, indicating their outstanding mechanical robustness and chemical durability. This work opens a new window for designing and implementing ultrahigh-performance EMI shielding materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call