Abstract

Flexible, transparent and conductive materials applied to the electromagnetic interference (EMI) shielding of foldable and wearable devices is urgently demanded in fifth-generation internet era. However, it is still a great challenge to realize excellent EMI shielding effectiveness (EMI SE) while maintaining high light transmittance. Herein, a double-layered structure strategy was proposed to prepare transparent and conductive silver nanowires (AgNWs) film with outstanding EMI SE. Specifically, the AgNWs network was partially embedded to hydroxy propyl methyl cellulose (HPMC) coating to enhance greatly its connectivity and integrity. As a result, the AgNWs/HPMC film showed a high transmittance of 90.55% at 550 nm and a sheet resistance of 11.62 Ω/sq, much better than other reported AgNW composite films so far. Meanwhile, the structural design also contributed to a high EMI SE of 45.79 dB. Meanwhile, it exhibited an enhanced conductive stability during bending test and harsh environment, such as full-oxygen, thermal and cold environment. Moreover, the multifunctional AgNWs/HPMC film presented remarkable thermal management performances including safe heating temperature (~ 71.3 °C) at high supplied voltages (7 V), ultra-rapid response time (~ 11 s), long-term heating stability and reliability. This work presented a facile and scalable approach to obtain the flexible AgNWs/HPMC film with high light transmittance and high EMI SE, promising for the EMI shielding foldable and homoiothermy wearable system for human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.